Home
Class 12
PHYSICS
Energy of a particle at absolute tempera...

Energy of a particle at absolute temperature T is of the order kT. Calculate the wavelength of thermal neutrons at `27^(@)C`. Take mass of neutron = `1.67 xx 10^(-27)kg, h =6.6 xx 10^(-34)Js` and k = 1.38 J `" mol"^(-1)K^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the wavelength of thermal neutrons at a temperature of 27°C, we will follow these steps: ### Step 1: Convert the temperature from Celsius to Kelvin The absolute temperature \( T \) in Kelvin is given by: \[ T = 27 + 273 = 300 \, \text{K} \] ### Step 2: Calculate the thermal energy The energy of a particle at absolute temperature \( T \) is given by: \[ E = kT \] where \( k \) is the Boltzmann constant. Given \( k = 1.38 \times 10^{-23} \, \text{J/K} \), we can calculate the thermal energy: \[ E = kT = (1.38 \times 10^{-23} \, \text{J/K}) \times (300 \, \text{K}) = 4.14 \times 10^{-21} \, \text{J} \] ### Step 3: Relate thermal energy to kinetic energy The kinetic energy of the neutron can be expressed as: \[ E = \frac{1}{2} mv^2 \] where \( m \) is the mass of the neutron. Rearranging this gives: \[ v^2 = \frac{2E}{m} \] Substituting the values, where the mass of the neutron \( m = 1.67 \times 10^{-27} \, \text{kg} \): \[ v^2 = \frac{2 \times 4.14 \times 10^{-21} \, \text{J}}{1.67 \times 10^{-27} \, \text{kg}} = \frac{8.28 \times 10^{-21}}{1.67 \times 10^{-27}} \approx 4.95 \times 10^{6} \] Taking the square root to find \( v \): \[ v \approx \sqrt{4.95 \times 10^{6}} \approx 2224 \, \text{m/s} \] ### Step 4: Calculate the de Broglie wavelength The de Broglie wavelength \( \lambda \) is given by: \[ \lambda = \frac{h}{p} \] where \( p \) is the momentum, given by \( p = mv \). Thus: \[ p = m \cdot v = (1.67 \times 10^{-27} \, \text{kg}) \cdot (2224 \, \text{m/s}) \approx 3.71 \times 10^{-24} \, \text{kg m/s} \] Now substituting into the de Broglie wavelength formula: \[ \lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34} \, \text{Js}}{3.71 \times 10^{-24} \, \text{kg m/s}} \approx 1.79 \times 10^{-10} \, \text{m} = 1.79 \, \text{Å} \] ### Final Answer The wavelength of thermal neutrons at 27°C is approximately: \[ \lambda \approx 1.79 \, \text{Å} \] ---
Promotional Banner

Topper's Solved these Questions

  • ELECTRONS AND PHOTONS

    SL ARORA|Exercise TYPE D : Problem For Self Practice|20 Videos
  • ELECTROMAGNETIC WAVES

    SL ARORA|Exercise Problem for self-practice|21 Videos
  • ELECTROSTATIC FORCES, CHARGES AND FIELDS

    SL ARORA|Exercise Problems For Self Practice|1 Videos

Similar Questions

Explore conceptually related problems

For what kinetic energy of a neutron will the associated de-Broglie wavelength be 1.40 xx 10^(-10)m ? Mass of neutron = 1.675 xx 10^(-27) kg, h = 6.63 xx 10^(-34) Js .

The mass of 1 mole of neutrons (m_(n) = 1.675 xx 10^(-27) kg) is:

Find the de Broglie wavelength of 2 MeV proton. Mass of proton =1.64xx10^(-27)kg , h=6.625xx10^(-34)Js

Calculate the de-Broglie wavelength of an electron of kinetic energy 100 eV. Given m_(e)=9.1xx10^(-31)kg, h=6.62xx10^(-34)Js .

Calculate the wavelength of de Broglie waves associated with a proton of kinetic energy 500 eV. (Given : m_(p)=1.67 xx 10^(-27)kg, h=6.63 xx 10^(-34)Js ).

Calculate the wavelength associated with a moving electron having kinetic energy of 1.375 xx 10^(-25) J . (mass of e = 9.1 xx 10^(-31) kg, h = 6.63 xx 10^(-34) kg m^2 s^(-1)) .

Calculate the wavelength (in nanometer) associated with a proton moving at 1.0xx10^(3)ms^(-1) (Mass proton =1.67xx10^(-27)kg and h=6.63xx10^(-34)Js ):-

Calculate the awavength ( in naometer ) assoricatioed with a protojn moving at 1.0xx 10^3 (Mass of proton =1.67 xx 10^(-27) kg and h=6.63 xx 10^(-34) js) :