Home
Class 12
PHYSICS
Find the molecular kinetic energy of 1 g...

Find the molecular kinetic energy of 1 g of helium at S.T.P. Given `R = 8.3 xx 10^(7) erg`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the molecular kinetic energy of 1 g of helium at standard temperature and pressure (S.T.P.), we can use the formula for the average kinetic energy of a gas: \[ KE = \frac{3}{2} nRT \] where: - \( KE \) is the kinetic energy, - \( n \) is the number of moles, - \( R \) is the universal gas constant, - \( T \) is the absolute temperature in Kelvin. ### Step 1: Calculate the number of moles of helium The molar mass of helium (He) is approximately 4 g/mol. Therefore, the number of moles \( n \) in 1 g of helium can be calculated as: \[ n = \frac{\text{mass}}{\text{molar mass}} = \frac{1 \text{ g}}{4 \text{ g/mol}} = 0.25 \text{ mol} \] ### Step 2: Use the value of \( R \) and \( T \) Given: - \( R = 8.3 \times 10^7 \text{ erg} \) - At S.T.P., the temperature \( T = 273 \text{ K} \) ### Step 3: Substitute values into the kinetic energy formula Now we can substitute the values of \( n \), \( R \), and \( T \) into the kinetic energy formula: \[ KE = \frac{3}{2} nRT = \frac{3}{2} \times 0.25 \text{ mol} \times 8.3 \times 10^7 \text{ erg} \times 273 \text{ K} \] ### Step 4: Calculate the kinetic energy Now, we perform the calculation step by step: 1. Calculate \( nRT \): \[ nRT = 0.25 \times 8.3 \times 10^7 \times 273 \] 2. First, calculate \( 8.3 \times 273 \): \[ 8.3 \times 273 = 2265.9 \] 3. Now multiply by \( 0.25 \): \[ 0.25 \times 2265.9 = 566.475 \] 4. Finally, multiply by \( \frac{3}{2} \): \[ KE = \frac{3}{2} \times 566.475 = 849.7125 \text{ erg} \] ### Final Result Thus, the molecular kinetic energy of 1 g of helium at S.T.P. is approximately: \[ KE \approx 8.5 \times 10^2 \text{ erg} \quad \text{(or 849.7125 erg)} \]
Promotional Banner

Topper's Solved these Questions

  • TRANSIENT CURRENT

    SL ARORA|Exercise Type C|17 Videos
  • THERMOELECTRICITY

    SL ARORA|Exercise Problems for Self Practice|13 Videos
  • UNIVERSE

    SL ARORA|Exercise PROBLEM_TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Calculate the kinetic energy of 1 gram of helium (M = 4) at 127^(@)C . Given R = 8.31 J "mole"^(-1) K^(-1) .

Find the kinetic energy of 1 g of nitrogen gas at 77^(@)C . Given R=8.31" J "mol^(-1)K^(-1)

The molecular kinetic energy of 1 g of helium (molecular weight 4) at 127^(@)C is (Given , R =8.31 J"mol"^(-1)K^(-1) )

Determine the molecular kinetic energy per gram of nitrogen molecules at 227 ""^(@)C, R = 8.310 J "mol"e^(-1) K^(-1) ,No = 6.03 xx 10^(26) moleculesKmol e^(- 1) . Molecular weight of nitrogen = 28.

Find kinetic energy of 3 litre of a gas at S.T.P given standard pressure is 1.013 xx 10^(5) N//m^(2) .

Determine the molecular kinetic energy per mole of nitrogen molecules at 227 ""^(@)C, R = 8.310 J "mol"e^(-1) K^(-1) ,No = 6.03 xx 10^(26) moleculesKmol e^(- 1) . Molecular weight of nitrogen = 28.

A spherical balloon of volume 4.00 xx 10^(3) cm^(3) contains helium at a pressure of 1.20 xx 10^(5) Pa . How many moles of helium are in the balloon if the average kinetic energy of the helium atoms is 3.60 xx 10^(-22) J ?

Determine the molecular kinetic energy per molecule of nitrogen molecules at 227 ""^(@)C, R = 8.310 J "mol"e^(-1) K^(-1) ,No = 6.03 xx 10^(26) moleculesKmol e^(- 1) . Molecular weight of nitrogen = 28.

Calculate the difference between the two principal specific heats of 1g of helium gas at S.T.P. Given atomic weight of helium = 4 and J = 4.186 J cal^(-1) and R = 8.31 J mol^(-1)K^(-1) .

The volume of steam produced by 1g of water at 100^(@)C is 1650 cm^(3) . Calculate the change in internal energy during the change of state. Given J= 4.2xx10^(7) erg . cal.^(-1), d= 981 cm^(s-2) . Latent heat of stream = 540 cal. G^(-1)