Home
Class 12
PHYSICS
The average kinetic energy of a hydrogen...

The average kinetic energy of a hydrogen molecule at `27^(@)C` is `9.3 xx 10^(-21) J`. The mass of hydrogen molecule is `3.1 xx 10^(-27) kg`. (i) Determine the average kinetic en-ergy at `227^(@)C`. (ii) Determine the root mean square speed of hydrogen molecule at `27^(@)C`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will break it down into two parts as per the question: ### Part (i): Determine the average kinetic energy at `227^(@)C`. 1. **Convert the temperatures from Celsius to Kelvin:** - The formula to convert Celsius to Kelvin is: \[ T(K) = T(°C) + 273.15 \] - For `27°C`: \[ T_1 = 27 + 273.15 = 300.15 \, K \] - For `227°C`: \[ T_2 = 227 + 273.15 = 500.15 \, K \] 2. **Use the formula for average kinetic energy:** The average kinetic energy (KE) of a molecule is given by: \[ KE = \frac{3}{2} k T \] where \( k \) is the Boltzmann constant, approximately \( 1.38 \times 10^{-23} \, J/K \). 3. **Calculate the average kinetic energy at `227°C`:** \[ KE_2 = \frac{3}{2} k T_2 \] Substituting the values: \[ KE_2 = \frac{3}{2} \times (1.38 \times 10^{-23}) \times (500.15) \] \[ KE_2 = \frac{3}{2} \times (1.38 \times 10^{-23}) \times (500.15) \approx 1.03 \times 10^{-20} \, J \] ### Part (ii): Determine the root mean square speed of hydrogen molecule at `27^(@)C`. 1. **Use the formula for root mean square speed (v_rms):** The root mean square speed is given by: \[ v_{rms} = \sqrt{\frac{3kT}{m}} \] where \( m \) is the mass of the hydrogen molecule. 2. **Substitute the values:** \[ v_{rms} = \sqrt{\frac{3 \times (1.38 \times 10^{-23}) \times (300.15)}{3.1 \times 10^{-27}}} \] 3. **Calculate the value:** \[ v_{rms} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 300.15}{3.1 \times 10^{-27}}} \] \[ v_{rms} \approx \sqrt{\frac{1.24 \times 10^{-20}}{3.1 \times 10^{-27}}} \approx \sqrt{4.0 \times 10^{6}} \approx 2000 \, m/s \] ### Final Answers: (i) The average kinetic energy at `227°C` is approximately \( 1.03 \times 10^{-20} \, J \). (ii) The root mean square speed of the hydrogen molecule at `27°C` is approximately \( 2000 \, m/s \).
Promotional Banner

Topper's Solved these Questions

  • TRANSIENT CURRENT

    SL ARORA|Exercise Type C|17 Videos
  • THERMOELECTRICITY

    SL ARORA|Exercise Problems for Self Practice|13 Videos
  • UNIVERSE

    SL ARORA|Exercise PROBLEM_TYPE|6 Videos

Similar Questions

Explore conceptually related problems

What is the average kinetic energy of a gas molecule at 27^(@)C ?

Calculate the root mean square speed of methane molecules at 27^(@)C .

Calculate the average kinetic energy of hydrogen molecule at 0^(@)C . Given k_(B)=1.38xx10^(-23)JK^(-1) .

The average kinetic energy of gas molecule at 27^(@)C is 6.21xx10^(-21) J. Its average kinetic energy at 127^(@)C will be

The average kinetic energy of the molecules of a gas at 27^(@) is 9xx10^(-20)J . What is its average K.E. at 227^(@)C ?

Calculate the average momentum of a hydrogen molecule at 20^(@)C . Boltzmann constant =1.38xx10^(-23) JK^(-1) and mass of a hydrogen molecule =3.2xx10^(-27)kg .

Calculate the average kinetic energy of hydrogen molecule at 0^@ C . Given k_(B) = 1.38 xx 10^(-23) JK^(-1) .