Home
Class 12
MATHS
lim(n->3)((n^4-9)/(n-3))...

`lim_(n->3)((n^4-9)/(n-3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+....+(1)/(2n))

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

lim_(n->oo)(-3n+(-1)^n)/(4n-(-1)^n) is equal to a. -3/4 b. 0 if n is even c. -3/4 if n is odd d. none of these

lim_(n->oo)(-3n+(-1)^n)/(4n-(-1)^n) is equal to a. -3/4 b. 0 if n is even c. -3/4 if n is odd d. none of these

the value of lim_(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+.................+n^2/(n^3+1)}

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

Evaluate : underset(nrarroo)"lim"(2n^(2)+3n-9)/(3n^(3)+2n+7)

lim_(ntoprop) (n)/(3){((3)/(n)+(9)/(n^(2)))^(2)+((3)/(n)+(18)/(n^(2)))^(2)+((3)/(n)+(27)/(n^(2)))^(2)+….+((3)/(n)+(9)/(n))^(2)} is less than or equal to

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

lim_(n to oo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+…+(1)/(2n^2)]=