Home
Class 12
MATHS
cos^(-1)(1)/(sqrt(5))+cos^(-1)(2)/(sqrt(...

cos^(-1)(1)/(sqrt(5))+cos^(-1)(2)/(sqrt(5))=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha=sin(sin^(-1)( 1/sqrt3)/(3)),beta=cos(cos^(-1)((1)/(sqrt(5)))-sin^(-1)((2)/(sqrt(5)))) then (beta^(2))/((3 alpha-4a^(3))^(2)) is

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

Show that sin^(-1)(1/sqrt(10))+cos^(-1)(2/sqrt5)=pi/4 .

tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=

tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))