Home
Class 10
MATHS
cos^(3)A*cos3A+sin^(3)A*sin3A=cos^(3)2A...

cos^(3)A*cos3A+sin^(3)A*sin3A=cos^(3)2A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^3 A cos 3A + sin^3 A sin 3A = cos^3 2A

sin^(3)A sin3A+cos^(3)A cos3A=cos^(3)(2A)

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

If A=30^(@) , show that : (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

(sin A+cos A)(1-sin A*cos A)=sin^(3)A+cos^(3)A

(sin^(3)A+cos^(3)A)/(sin A+cos A)+(sin^(3)A-cos^(3)A)/(sin A-cos A)=2

Prove that (sin A+cos A)(1-sin A cos A)=sin^(3)A+cos^(3)A

cos ^ (3) A sin3A + sin ^ (3) A cos3A = k sin4A rArr k =

i) Prove that: cos^(3)2A+3cos2A = 4(cos^(6)A-sin^(6)A) ii) Prove that: 4(cos^(3)10^(@) + sin^(3)20^(@)) = 3(cos10^(@)+sin20^(@))