Home
Class 12
MATHS
sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)},0<x<...

sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)},0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)}=(pi)/(4)+(sin^(-1)x)/(2),0

Differentiate 'sin^(^^)(-1){(sqrt(1+x)+sqrt(1-x)/2},backslash backslash0

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/2-(sin^(-1)x)/2,""0 < x < 1

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/4+(cos^(-1)x)/2,""0 < x < 1

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/4+(cos^(-1)x)/2,""0 < x < 1

int sqrt((x)/(1-x))dx is equal to sin^(-1)sqrt(x)+C(b)sin^(-1){sqrt(x)-sqrt(x(1-x))}+C(c)sin^(-1){sqrt(x(1-x)}+C(d))sin^(-1)sqrt(x)-sqrt(x(1-x))+C