Home
Class 12
MATHS
If 1,omega,omega^2 are the cube roots of...

If `1,omega,omega^2` are the cube roots of unity and `[(1+omega,2omega),(-2omega,-b)]+[(a,-omega),(3omega,2)]=[(0,omega),(omega,1)],` then `a^2+b^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

IF 1, omega , omega^2 are the cube roots of unity and if [{:(1+omega,2 omega),(-2 omega,-b):}]+[{:(a,-omega),(3 omega,2):}]=[{:(0, omega),(omega,1):}] then a^2+b^2 is equal to

If 1, omega, omega ^(2) are the cube roots of unity , then w^2=

If 1,omega,(omega)^2 are the cube roots of unity, then (omega)^2(1+omega)^3-(1+(omega)^2)omega=

If 1,omega,omega^(2) are three cube roots of unity, then (1-omega+omega^(2))(1+omega-omega^(2)) is

If 1,omega,(omega)^2 are the cube roots of unity, then (a+b+c)(a+b(omega)+c(omega)^2)(a+b(omega)^2+c(omega)) =

If 1,omega,omega^(2) are the roots of unity then (1-omega+omega^(2))^(3)+(1+omega-omega^(2))^3=

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If 1, omega omega^(2) are the cube roots of unity show that (1 + omega^(2))^(3) - (1 + omega)^(3) = 0