Home
Class 12
MATHS
If P ,Q and R are three collinear poi...

If `P ,Q` and `R` are three collinear points such that ` vec P Q= vec a` and ` vec Q R` = ` vec bdot` Find the vector ` vec P R` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Two vectors vec P and vec Q

What is the anlge between vec P xx vec Q and vec Q xx vec P is

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

If vec P+ vec Q = vec R and |vec P| = |vec Q| = | vec R| , then angle between vec P and vec Q is

Consider the three vectors p,q, and r such that vec p=vec i+vec j+vec k and vec q=vec i-vec j+vec k;p xx r=q+cp and p.r=2