Home
Class 12
MATHS
The vertices A , B , C of triangle A B C...

The vertices `A , B , C` of triangle `A B C` have respectively position vectors ` vec a , vec b , vec c` with respect to a given origin `O` . Show that the point `D` where the bisector of `/_A` meets `B C` has position vector ` vec d=(beta vec b+gamma vec c)/(beta+gamma),` where `beta=| vec c- vec a|` and, `gamma=| vec a- vec b|dot` Hence, deduce that incentre I has position vector `(alpha vec a+beta vec b+gamma vec c)/(alpha+beta+gamma)` where `alpha=| vec b- vec c|`

Promotional Banner

Similar Questions

Explore conceptually related problems

The position vector of A,B are vec a and vec b respectively.The position vector of C is (5(vec a)/(3))-vec b then

If A, B, C are vertices of a triangle whose position vectors are vec a, vec b and vec c respectively and G is the centroid of Delta ABC, " then " vec(GA) + vec(GB) + vec(GC), is

If quad vec r = alpha (vec b xxvec c) + beta (vec c xxvec a) + gamma (vec a xxvec b) and [vec with bvec c] = 2 then alpha + beta + gamma

If O A B C is a tetrahedron where O is the orogin anf A ,B ,a n dC are the other three vertices with position vectors, vec a , vec b ,a n d vec c respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector (a^2( vec bxx vec c)+b^2( vec cxx vec a)+c^2( vec axx vec b))/(2[ vec a vec b vec c]) .

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

Show that the points A,B,C with position vectors 2vec a+3vec b+5vec c,vec a+2vec b+3vec c and 7vec a-vec c respectively,are collinear.

if vec alpha|(vec beta xxvec gamma), then (vec alpha xx beta)*(vec alpha xxvec gamma) equals to |vec alpha|^(2)(vec beta*vec gamma) b.|vec beta|^(2)(vec gamma*vec alpha) c.|vec gamma|^(2)(vec alpha*vec beta) d.|vec alpha||vec beta||vec gamma|

Show that the points with position vectors vec a-2vec b+3vec c,-2vec a+3vec b-vec c and 4vec a-7vec b+7vec c are collinear.

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c

If the lines vec r=x((vec b)/(|vec b|)+(vec c)/(|vec c|)) and vec r=2vec b+y(vec c-vec b) intersect at a point with position vector z((vec b)/(|vec b|)+(vec c)/(|vec c|)), then