Home
Class 10
MATHS
5^(2x+1)+5^(2-x)=5^(3+1)...

5^(2x+1)+5^(2-x)=5^(3+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 5^(x+1)+5^(2-x)=5^(3)+1

Solve 5^(x+1)+5^(2-x)=5^3+1

Solve: 5^((x+1))+5^((2-x))=5^(3)+1.

1,1,1(2^(x)+2^(-x))^(2),(3^(x)+3^(-x))^(2),(5^(x)+5^(-x))^(2)(2^(x)-2^(-x))^(2),(3^(x)-3^(-x))^(2),(5^(x)-5^(-x))^(2)]|=

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

(2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo=

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))