Home
Class 12
MATHS
Find the approximate value of f(2. 01), ...

Find the approximate value of `f(2. 01)`, where `f(x)=4x^2+5x+2`.

Text Solution

Verified by Experts

Here, we will use the definition of derivatives:
`f'(x) = (f(x+Deltax)-f(x))/((x+Deltax)-x)`
`f'(x) = (f(x+Deltax)-f(x))/(Deltax)`
Here, `x = 2 and Deltax = 0.01`
`:. f'(2) = (f(2+0.01) - f(2))/0.01->(1)`
Here, `f'(x) = 8x+5`
`:. f'(2) = 8(2)+5 = 21`
`f(2) = 4(4)+5(2)+2 = 28 `
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Using differentiation, find the approximate value of f(3.01) , where f(x)=4x^(2)+5x+2.

Find the approximate value of f(3.12) , where f(x)=4x^(2)+5x+2.

Find the approximate value of f(3.02), where f(x)=3x^(2)+5x+3

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3.02), where f(x)=3x^(2)+5x+3

Using differentials,find the approximate value of f(2.01), where f(x)=4x^(3)+5x^(2)+2

Find the approximate value of f(2.01) where f(x) =x^(3)-4x+7 .

Find the approximate value of f(5. 001) , where f(x)=x^3-7x^2+15 .

Using differential,find the approximate value of f(2.01) where f(x)=4x^(3)+5x^(2)+2

Find the approximate value of f(3.03) where f(x) = 3x^(2) + 5x + 6 .