Home
Class 12
MATHS
If O is a point in space, A B C is a ...

If `O` is a point in space, `A B C` is a triangle and `D , E , F` are the mid-points of the sides `B C ,C A` and `A B` respectively of the triangle, prove that ` vec O A` + ` vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If D E and F be the mid ponts of the sides BC, CA and AB respectively of the /_\ABC and O be any point, then prove that vec(OA)+vec(OB)+vec(OC)=vec(OD)+vec(OE)+vec(OF)

If vec a + vec b + vec c = o, prove that vec a xxvec b = vec b xxvec c = vec c xxvec a

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If a,b,c are the lengths of sides,BC,CA and AB of a triangle ABC, prove that vec BC+vec CA+vec AB=vec O and deduce that (a)/(sin A)=(b)/(sin B)=(c)/(sin C) .

If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a , vec O B= vec b , then what is vec O C ?

If vec(b) and vec(c ) are the position vectors of the points B and C respectively, then the position vector of the point D such that vec(BD)= 4 vec(BC) is

If vec a,vec b,vec c are position vectors o the point A,B, and C respectively,write the value of vec AB+vec BC+vec AC

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

A,B,C and D are any four points in the space,then prove that |vec AB xxvec CD+vec BC xxvec AD+vec CA xxvec BD|=4 (area of o+ABC.)