Home
Class 12
MATHS
If I(1) = int(0)^(pi) (x sin x)/(1+cos^2...

If `I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx` then, `I_(1) : I_(2)` is equal to

A

`3:4`

B

`1:2`

C

`4:3`

D

`2:3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Evaluate \( I_1 \) The integral \( I_1 \) is defined as: \[ I_1 = \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \] To simplify this, we can use the property of definite integrals: \[ \int_0^{a} f(x) \, dx = \int_0^{a} f(a - x) \, dx \] Here, we let \( a = \pi \): \[ I_1 = \int_0^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^2(\pi - x)} \, dx \] Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we have: \[ \cos^2(\pi - x) = \cos^2 x \] Thus, \[ I_1 = \int_0^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx \] Now, we can add the two expressions for \( I_1 \): \[ 2I_1 = \int_0^{\pi} \left( \frac{x \sin x}{1 + \cos^2 x} + \frac{(\pi - x) \sin x}{1 + \cos^2 x} \right) \, dx \] This simplifies to: \[ 2I_1 = \int_0^{\pi} \frac{\pi \sin x}{1 + \cos^2 x} \, dx \] Thus, \[ I_1 = \frac{\pi}{2} \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx \] ### Step 2: Evaluate the integral \( \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx \) To evaluate this integral, we can use the substitution \( t = \cos x \), which gives \( dt = -\sin x \, dx \). The limits change from \( x = 0 \) to \( x = \pi \) which corresponds to \( t = 1 \) to \( t = -1 \): \[ \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx = \int_1^{-1} \frac{-1}{1 + t^2} \, dt = \int_{-1}^{1} \frac{1}{1 + t^2} \, dt \] This integral evaluates to: \[ \int_{-1}^{1} \frac{1}{1 + t^2} \, dt = 2 \tan^{-1}(1) = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] Thus, \[ I_1 = \frac{\pi}{2} \cdot \frac{\pi}{2} = \frac{\pi^2}{4} \] ### Step 3: Evaluate \( I_2 \) The integral \( I_2 \) is defined as: \[ I_2 = \int_0^{\pi} x \sin^4 x \, dx \] Using the identity \( \sin^4 x = \left( \sin^2 x \right)^2 = \left( \frac{1 - \cos 2x}{2} \right)^2 \): \[ \sin^4 x = \frac{1 - 2\cos 2x + \cos^2 2x}{4} \] Now, we can express \( I_2 \): \[ I_2 = \frac{1}{4} \int_0^{\pi} x (1 - 2\cos 2x + \frac{1 + \cos 4x}{2}) \, dx \] This can be split into three integrals: \[ I_2 = \frac{1}{4} \left( \int_0^{\pi} x \, dx - 2 \int_0^{\pi} x \cos 2x \, dx + \frac{1}{2} \int_0^{\pi} x \cos 4x \, dx \right) \] The first integral evaluates to: \[ \int_0^{\pi} x \, dx = \frac{\pi^2}{2} \] The second integral can be evaluated using integration by parts: Let \( u = x \) and \( dv = \cos 2x \, dx \), then \( du = dx \) and \( v = \frac{1}{2} \sin 2x \): \[ \int_0^{\pi} x \cos 2x \, dx = \left[ \frac{x}{2} \sin 2x \right]_0^{\pi} - \int_0^{\pi} \frac{1}{2} \sin 2x \, dx = 0 - \left[ -\frac{1}{4} \cos 2x \right]_0^{\pi} = \frac{1}{4} (1 - 1) = 0 \] The third integral can also be evaluated similarly: \[ \int_0^{\pi} x \cos 4x \, dx = 0 \] Thus, \[ I_2 = \frac{1}{4} \left( \frac{\pi^2}{2} - 0 + 0 \right) = \frac{\pi^2}{8} \] ### Step 4: Find the ratio \( \frac{I_1}{I_2} \) Now we can find the ratio: \[ \frac{I_1}{I_2} = \frac{\frac{\pi^2}{4}}{\frac{\pi^2}{8}} = \frac{8}{4} = 2 \] ### Final Answer Thus, the ratio \( I_1 : I_2 \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 4

    NTA MOCK TESTS|Exercise MATHEMETIC - SUBJECTIVE NUMERICAL|5 Videos
  • JEE MOCK TEST 3

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 5

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

I= int_0^(pi)(x sin x)/(1+cos^(2)x)dx

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

" (i) "int_(0)^( pi/2)sin^(-1)xdx

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

If I=int_(0)^(2pi) sin^(2) x" dx" , then

If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to

int_(0)^( pi/2)(1+sin x)^(3)cos xdx

int_(0)^( pi/2)(1+sin x)^(3)cos xdx