Home
Class 10
MATHS
(x)2cos^(2)theta-cos^(4)theta+sin^(4)the...

(x)2cos^(2)theta-cos^(4)theta+sin^(4)theta=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2cos^(2)theta-cos^(4)theta+sin^(4)theta=1

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

The minimum value of y=(1+sin^(2)theta+sin^(4)theta+sin^(6)theta+...)+(1+cos^(2)theta+cos^(4)theta+cos^(6)theta+ .) in theta in(0,(pi)/(2)) is

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)