Home
Class 11
MATHS
" If "tan^(-1)(1)/(1+2x)+tan^(-1)(1)/(1+...

" If "tan^(-1)(1)/(1+2x)+tan^(-1)(1)/(1+4x)=tan^(-1)(2)/(x^(2))" Thestum of alloalies of xatifying the equation."

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

If "Tan"^(-1)1/(1+2x)+"Tan"^(-1)1/(4x+1)" = Tan"^(-1)2/(x^(2)) then x(x!=0)=

Solve: "tan"^(-1) 1/(2x+1) +"tan"^(-1) 1/(4x+1) = "tan"^(-1) 2/x^2

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))