Home
Class 14
MATHS
[" ALGEBRA OF VEGIUHO "],[" 23.In a trap...

[" ALGEBRA OF VEGIUHO "],[" 23.In a trapezium ABCD the vector "Bvec C=lambdavec AB" .If "],[vec p=Avec C+BD" is collinear with "vec AD" such that "vec p'=muvec AD," then "]

Promotional Banner

Similar Questions

Explore conceptually related problems

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

ABCDEF is a regular hexagon.Find the vector vec AB+vec AC+vec AD+vec AE+vec AF in terms of the vector vec AD

ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD + vec AE + vec AF in terms of the vector vec AD

ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD + vec AE + vec AF in terms of the vector vec AD

If vec x.vec a=0,vec x*vec b=0 and vec x*vec c=0 for some non-zero vector vec x ,then prove that [vec avec bvec c]=0