Home
Class 12
MATHS
Prove that: ( vec a- vec b)*{( vec b-...

Prove that: `( vec a- vec b)*{( vec b- vec c)xx(vec c- vec a)}"=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

If vec a,vec b,vec c are the position vectors of points A,B,C and D respectively such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 then D is the

If vec a, vec b, vec c are three vectors such that | vec b | = | vec c | then {(vec a + vec b) xx (vec a + vec c)} xx {(vec b xxvec c)} * (vec b + vec c) =

For three non-zero vectors vec(a),\vec(b) " and"vec(c ) , prove that [(vec(a)-vec(b))\ \ (vec(b)-vec(c))\ \ (vec(c )-vec(a))]=0

If vec a,vec b,vec c are three vectors such that vec a+vec b+vec c=vec 0, then prove that vec a xxvec b=vec b xxvec c=vec c xxvec a

Prove that : {(vec(b)-vec(c ))xx(vec(c )-vec(a))}.(vec(a)-vec(b))=0 .

For any three vectors vec a,vec b,vec c show that vec a xx(vec b+vec c)+vec b xx(vec c+vec a)+vec c xx(vec a+vec b)=vec 0

If vec a, vec b, vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a + vec b) + (vec bxx vec c) + (vec b + vec c). ( vec c xx vec a) + (vec c + vec a). (vec axx vec b) is equal to

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these