Home
Class 12
MATHS
If vec axx vec b= vec bxx vec c!=0 , ...

If ` vec axx vec b= vec bxx vec c!=0` , then show that ` vec a+ vec c=m vec b ,` where `m` is any scalar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a xxvec b=vec b xxvec c!=0, then show that vec a+vec c=mvec b, where m is any scalar.

If vec a xxvec b=vec c xxvec d and vec a xxvec c=vec b xxvec d then show that vec a-vec d is parallel to vec b-vec c where a!=d and b!=c

If vec a xxvec b = vec c, vec b xxvec c = vec a, where vec c! = 0

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a xxvec b=vec a xxvec c,vec a!=vec 0 and vec b!=vec c show that vec b=vec c+tvec a for some scalar t

If vec(a)xx vec(b)=vec(b)xx vec(c )ne vec(0) , show that vec(a)+vec(c )=vec(mb) , m being a scalar.

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c

If vec a xx vec b= vec b xx vec c != vec 0 then which one is true where k is a suitable scalar?

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

If vec a xxvec b=vec b xxvec c!=0, where vec a,vec b and vec c are coplanar vectors,then for some scalar k