Home
Class 10
MATHS
(ix)2(x^(2)+(1)/(x^(2)))-3(x+(1)/(x))-1=...

(ix)2(x^(2)+(1)/(x^(2)))-3(x+(1)/(x))-1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+x+1=0 then the absolute value of (x+(1)/(x))+(x^(2)+(1)/(x^(2)))+(x^(3)+(1)/(x^(3)))+...(x^(52)+(1)/(x^(52))) equals to

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

lim_(x rarr0)((1+5x^(2))/(1+3x^(2)))^(1/x^(2))=

If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)/((x+1)^(3))+....=

If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)/((x+1)^(3))+....=

lim_(x rarr0)((5x^(2)+1)/(3x^(2)+1))^(1/x^(2))

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

lim_(x rarr0)((1+x^(2))^((1)/(3))-(1-2x)^((1)/(4)))/(x+x^(2))

lim_(x rarr0)((1+x^(2))^((1)/(3))-(1-2x)^((1)/(4)))/(x+x^(2))