Home
Class 11
MATHS
[f(x)=4cos^(4)((x-pi)/(4 pi^(2)))-2cos((...

[f(x)=4cos^(4)((x-pi)/(4 pi^(2)))-2cos((x-pi)/(2 pi^(2)))],[" Period "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The fundamental period of the function f(x)=4cos^(4)((x-pi)/(4 pi^(2)))-2cos((x-pi)/(2 pi^(2))) is equal to:

Define f : R to R by f(x) = 4 cos^(4)((x-pi)/(4pi^(2))) - 2 cos((x-pi)/(2pi^(2))) AA x in R If the period of f is kpi^(3) , then k = ……………..

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2)))

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2))) is k pi^(3) then the value of [1/k] (where [ ] denote the G.I.F )

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

The extreme values of 4cos(x^(2)).cos((pi)/(3)+x^(2)).cos((pi)/(3)-x^(2)) are