Home
Class 12
MATHS
Define vec ax vec b and prove tha...

Define ` vec ax vec b` and prove that `| vec ax vec b|=( vec adot vec btantheta,` where `theta` is the angle between ` vec a` and ` vec b` .

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that | vec axx vec b|=( vec adot vec b)t a ntheta, w h e r e theta is the angle between vec a a n d vec bdot

Prove that |vec(a) xx vec(b)|=(vec(a)*vec(b)) tan theta," where " theta is the angle between vec(a) and vec(b) .

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b

Vector vec a,vec b and vec c are such that vec a+vec b+vec c=vec 0 and |a|=3,|vec b|=5 and |vec c|=7. Find the angle between vec a and vec b.

If vec a and vec b are unit vectors find the angle between vec a+vec b and vec a-vec b

What is the angle between (vec A+ vec B) and (vec A xx vec B) ?

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

If vec a and vec b are two vectors such that |vec a|=4,|vec b|=3 and vec avec b=6. Find the angle between vec a and vec b

If vec a and vec b are two vectors such that |vec a|=4,|vec b|=3 and vec a*vec b=6. Find the angle between vec a and vec b

Let vec a and vec b be unequal unit vectors such that vec a*((vec a-vec b)times(3vec a-4vec b))=vec a+vec b then the angle between vec a&vec b is