Home
Class 10
MATHS
" (i) "p(x)=2x^(2)+3x+1,q(x)=x+2...

" (i) "p(x)=2x^(2)+3x+1,q(x)=x+2

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide p(x) by q(x) p(x)=2x^(2)+3x+1,g(x)=x+2

The sum of the polynomials p(x) =x^(3) -x^(2) -2, q(x) =x^(2) -3x+ 1

Verify whether the following are zeroes of the polynomial, indicated against them . (i) p(x)=3x+1,x=-(1)/(3) (ii) p(x)=5x-pi,x=(4)/(5) (iii) p(x)=x^(2)-1,x=1,-1 (iv) p(x)=(x+1),(x-2),x=-1,2 (v) p(x)=x^(2),x=0 (vi) p(x)=lx+m,x=(-m)/(l) (vii) p(x)=3x^(2)-1,x=-(1)/(sqrt(3)),(2)/(sqrt(3)) (viii) p(x)=2x+1,x=(1)/(2)

p(x)=2x^2-5x+1 , q(x) = x^2+3x+2 ആയാല്‍ p(2),q(2) , p(2)+q(2) എന്നിവ കാണുക

p(x)=2x^2-5x+1 , q(x) = x^2+3x+2 ആയാല്‍ r(x) = p(x)+q(x) കാണുക

The sum of the polynomials p(x) = x^(3) - x^(2) - 2, q(x) = x^(2) - 3x + 1

p(x)=2x^2-5x+1, q(x) =x^2+3x+2 ആയാല്‍ p(2) , q(2) കാണുക.

If p(x)=x^2-3x+2x^3+5 and q(x)=x^2+2x+4, the find p(x)+q(x).

Use factor theorem to verify in the following that q(x) is a factor of p(x)= 2x^3+5x^2-3x-4, q(x)=x-1 .