Home
Class 12
MATHS
f:R rarr R" is a function defined by "f(...

f:R rarr R" is a function defined by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))" then "f" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then -(1) fis bijection (2) fis an injection only (3) f is a surjection fis neither injection nor a surjection

Let f:R rarr R be a function defined by,f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then

Let f:R rarr R be a function defined by f(x)=(e^(|)xl-e^(-x))/(e^(x)+e^(-x)) then- ) fis a bijection (2) fis an injection only (3) fis a surjection (4) fis neither injection nor a surjection f(x) elx

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

Let f:R rarr R be a function defined by f(x)=(e^(|)xl-e^(-x))/(e^(x)+e^(-x)) then- -(1) fis a bijection (2) fis an injection only (3) fis a surjection (4) fis neither injection nor a surjection f(x) elx

Let f : R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)) then --(1) f is bijection (2) f is an injection only (3) f is a surjection (4) f is neither injection nor a surjection

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then

Let f: R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)) . Then, f is a bijection (b) f is an injection only (c) f is surjection on only (d) f is neither an injection nor a surjection