Home
Class 12
MATHS
" 15.Prove that "int sqrt(a^(2)-x^(2))dx...

" 15.Prove that "int sqrt(a^(2)-x^(2))dx=(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))+C," for "C in(-a,a)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : intsqrt(a^(2)-x^(2))dx=x/2sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))+c

int sqrt(a^(2)-x^(2))dx=(1)/(2)x sqrt(a^(2)-x^(2))+(1)/(2)a^(2)sin^(-1)((x)/(a))+c

prove intsqrt(a^2-x^2) dx = x/2sqrt(a^2-x^2)+(a^2)/(2)sin^-1(x)/(a)+c

If int sqrt(a^(2)-x^(2))dx=(x)/(2)sqrt(a^(2)-x^(2))+k sin^(-1)(x/a)+c , then the value of k is-

int(1)/(sqrt(a^(2)-x^(2)))=sin^(-1)((x)/(a))+c

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)(x)/(a)}=sqrt(a^(2)-x^(2))

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)(sin^(-1)x)/(a)}=sqrt(a^(2)-x^(2))