Home
Class 12
MATHS
Lim(n->oo) (1.n+2(n-1)+3(n-2)+......+...

`Lim_(n->oo) (1.n+2(n-1)+3(n-2)+......+n.1)/(1^2 +2^2+3^2+......+n^2)` has the value:

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

underset n rarr oo n has the value: Lim_ (n rarr oo) (1 * n + 2 (n-1) +3 (n-2) + ...... + n.1) / (1 ^ ( 2) + 2 ^ (2) + 3 ^ (2) + ...... + n ^ (2))

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_ (n rarr oo) (1.n + 2 (n-1) +3 (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2) + 3 ^ ( 2) + ... + n ^ (2))

The value of lim_ (n rarr oo) (1.n + 2 * (n-1) + 3 * (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2 ) + ... + n ^ (2))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

The value of lim_(n rarr oo)(1^(2)*n+2^(2)*(n-1)+......+n^(2)*1)/(1^(3)+2^(3)+......+n^(3)) is equal to

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))