Home
Class 12
MATHS
(x^(2)y-3y^(2)+5xy^(2))-(-x^(2)y+3xy^(2)...

`(x^(2)y-3y^(2)+5xy^(2))-(-x^(2)y+3xy^(2)-3y^(2))`
Which of the following is equivalent to the expression above?

A

`4x^(2)y^(2)`

B

`8xy^(2)-6y^(2)`

C

`2x^(2)y+2xy^(2)`

D

`2x^(2)y+8xy^(2)-6y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((x^{2}y - 3y^{2} + 5xy^{2}) - (-x^{2}y + 3xy^{2} - 3y^{2})\), we will follow these steps: ### Step 1: Distribute the negative sign We start by distributing the negative sign across the second set of parentheses: \[ (x^{2}y - 3y^{2} + 5xy^{2}) + (x^{2}y - 3xy^{2} + 3y^{2}) \] ### Step 2: Combine like terms Now we will combine the like terms from the expression: \[ x^{2}y + x^{2}y + (-3y^{2} + 3y^{2}) + (5xy^{2} - 3xy^{2}) \] ### Step 3: Simplify the expression Now we simplify the expression: - Combine \(x^{2}y + x^{2}y\) to get \(2x^{2}y\). - The terms \(-3y^{2} + 3y^{2}\) cancel out to \(0\). - Combine \(5xy^{2} - 3xy^{2}\) to get \(2xy^{2}\). Putting it all together, we have: \[ 2x^{2}y + 2xy^{2} \] ### Final Result Thus, the simplified expression is: \[ 2x^{2}y + 2xy^{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

xy((x)/(y)-y) Which of the following is equivalent to the expression above?

((10x^(2)y)/(x^(2)+xy))times(((x+y)^(2))/(2xy))÷((x^(2)-y^(2))/(y^(2))) Which of the following is equivalent to the expression above?

Which of the following is equivalent to (3x^3y^4)(-2x^2y^5)^3 ?

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)

(y^(3)+3y^(2)-y-3)/(y^(2)+4y+3) The expression above is equivalent to

Add : 5x^(2)-2xy +8y^(2), 3xy -7y^(2)-2x^(2) and y^(2)+xy-4x^(2) .

2x^2-3xy+5y^2 is an algebric expression. find the terms of the expression

Subtract : 5x^(2)-3xy -7y^(2) from 3x^(2)-xy-2y^(2)

Which expression is equivalent to ((2xy)^(-2))/(4y^(-5)) ?