Home
Class 12
MATHS
The value of sum(r=1)^n(nPr)/(r !) is...

The value of `sum_(r=1)^n(nP_r)/(r !)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

What is the value of sum_(r=1)^(n) (P(n, r))/(r!) ?

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

The value of sum_(r=1)^(n) log ((a^(r ))/( b^(r-1))) is :

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to