Home
Class 12
MATHS
If n-1C3+n-1C4>^n C3, then...

If `n-1C_3+n-1C_4>^n C_3,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If ^n C_3+^n C_4>^(n+1)C_3 , then a. n >6 b. n >7 c. n<6 d. none of these

If ^n C_3+^n C_4>^(n+1)C_3 , then a. n >6 b. n >7 c. n<6 d. none of these

If ^n C_3+^n C_4>^(n+1)C_3 , then a. n >6 b. n >7 c. n<6 d. none of these

Prove that "^(n-1)C_3+ ^(n-1)C_4 > ^nC_3 if n >7.

If .^(n)C_3 + ^(n)C_4 > ^(n+1)C_3 then

If .^(n-1)c_3+^(n-1)c_4gt^nc_3 then n is greater than

If ""^n C_3+ ""^n C_4 > ""^(n+1)C_3 , then a. n >6 b. n >7 c. n d. none of these