Home
Class 12
MATHS
let Sn=1/(n.(n+1))+1/((n+1).(n+2))+1/((n...

let `S_n=1/(n.(n+1))+1/((n+1).(n+2))+1/((n+2)(n+3))+..............to n` terms then `lim_(n->oo) S_n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]

Let S_(n)=(n)/((n+1)(n+2))+(n)/((n+2)(n+4))+(n)/((n+3)(n+6))+............+(1)/(6n) then lim_(n rarr oo)S_(n) has the value equal to

If S_(n) = (1)/(1.4)+(1)/(4.7) + (1)/(7.10) +……. to n terms, then lim_(n rarr oo) S_(n) equals :

If U_(n)=(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))^(2).............(1+(n^(2))/(n^(2)))^(n) m then lim_(n to oo)(U_(n))^((-4)/(n^(2))) is equal to

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to