Home
Class 14
MATHS
sqrt(64009)=?...

sqrt(64009)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(8 + sqrt(57 + sqrt(38 + sqrt(108 + sqrt(169)))))=?

sqrt(sqrt(7+sqrt(48))-sqrt(7-sqrt(48)))=

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

( Simplify: )/(sqrt(100)-sqrt(99))-(1)/(sqrt(99)-sqrt(98))+(1)/(sqrt(98)-sqrt(97))-(1)/(sqrt(97)-sqrt(96))+backslash+(1)/(sqrt(2)-sqrt(1))

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

Find x : ( sqrt(x) + sqrt(a) ) / ( sqrt(x) - sqrt(a) ) + ( sqrt(x) - sqrt(a) ) / ( sqrt(x) + sqrt(a) ) = 6

(sqrt(12)+sqrt(5)+sqrt(3))/(sqrt(12)-sqrt(5)-sqrt(3))+(sqrt(20)+sqrt(5)+sqrt(3))/(sqrt(20)-sqrt(5)-sqrt(3))