Home
Class 12
MATHS
" If "A=(1)/(3)[[1,-2,2],[-2,1,2],[-2,-2...

" If "A=(1)/(3)[[1,-2,2],[-2,1,2],[-2,-2,-1]]," show that "AA'=I

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[1,2,2],[2,1,2],[2,2,1]] , then show that A^2-4A=5I_3

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .

If A=(1)/(3)[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A A'=A'A=I.

" 06.If "A=(1)/(3)[[1,2,2],[2,1,-2],[x,2,y]]" and "AA'=1" ,then find "x-2y

A=[[1,2,3],[3,-2,1],[4,2,1]] Show that A^3-23A-40I=0

If A=[[1,2,3],[3,-2,1],[4,2,1]] "show that" A^3-23A-40I=0

If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):}) , show that "AA"^(T)=I_(3) .

If A = [[1,2,3],[3,-2,1],[4,2,1]] , then show that A^3 - 23A - 40I = O

Find x and y if the matrix A=(1)/(3)[[1,2,22,1,-2x,2,y]] satisfy the condition AA'=A'A=I_(3)]]