Home
Class 9
MATHS
(i)quad sqrt(ab)=sqrt(a)sqrt(b)...

(i)quad sqrt(ab)=sqrt(a)sqrt(b)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(ab)=sqrt(a)sqrt(b) and a<0 , find arg(b+ai)

If sqrt(ab)=sqrt(a)sqrt(b) and a<0, find arg(b+ai)

The conjugate surd of sqrt(a)+b is sqrt(a)-b b- "sqrt(a) sqrt(a)+sqrt(b) sqrt(a)-sqrt(b)

If sqrt(a)>sqrt(b)>sqrt(c)>sqrt(d) where a,b,c and d are consecutive natural numbers then which of the following is correct (1)sqrt(a)-sqrt(b)>sqrt(c)-sqrt(d)(2)sqrt(c)-sqrt(d)>sqrt(a)-sqrt(b)(3)sqrt(a)-sqrt(c)>sqrt(b)-sqrt(d)(4)sqrt(c)-sqrt(d)=sqrt(a)-sqrt(b)

Show that : sqrt( a/b ) = sqrt(a)/ sqrt( b )

If 0

Let a,b in R.sqrt(a)sqrt(b)=sqrt(ab) is not true if

The simplified value of {(1-(1+2sqrt(ab))/(1-3sqrt(ab)))(sqrt(ab)(1-3sqrt(ab))-((1-ab)(4sqrt(ab)-1)/(1+sqrt(ab))}^(3)+8ab