Home
Class 12
MATHS
int(x^(2)+1)/((x+1)^(2))e^(x)dx=...

int(x^(2)+1)/((x+1)^(2))e^(x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx=

int(x+1)^(2)e^(x)dx

int (x+1)^(2)e^(x)dx =

Evaluate int((1-x)^(2))/((1+x^(2))^(2))e^(x)dx

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

int e^(x).(x^(2)+1)/((x+1)^(2))dx

int((x^(2)+1)e^(x))/((x+1)^(2))dx