Home
Class 13
MATHS
" If "cos^(4)x+sin^(4)x-sin2x+(3)/(4)sin...

" If "cos^(4)x+sin^(4)x-sin2x+(3)/(4)sin^(2)2x=y

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= ( sin^(4) x - cos^(4) x + sin^(2) x cos^(2) x )/( sin^(4) x + cos^(4) x + sin^(2) x cos^(2) x) , x in ( 0, (pi)/(2) ) , then

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Solve the equation sin^(4)x+cos^(4)x-2sin^(2)x+(3sin^(2)2x)/(4)=0

int(4cos^(2)x-3sin^(2)x)/(sin^(2)2x)d(4x)=

If (cos^(4)x)/(cos^(2)y)+(sin^(4)x)/(sin^(2)y)=1 , then (cos^(4)y)/(cos^(2)x)+(sin^(4)y)/(sin^(2)y) equal :

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then