Home
Class 12
MATHS
11. If a, b,c in R-{0}, such that a!=b!=...

11. If `a, b,c in R-{0}`, such that `a!=b!=c`, then the matrix `[[0,(a-b)^3,(a-c)^3],[(b-a)^3,0,(b-c)^3],[[c-a)^3,(c-b)^3,0]]` is (A) symmetric (B) singular (C) non-singular (D) invertible

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : |[0, (a-b)^3, (b-c)^3], [(b-a)^3, 0, (c-a)^3],[(c- b)^3, (a-c)^3, 0]|

The expression (a-b)^3+(b-c)^3+(c-a)^3 =0 if :

If a+b+c=0, then write the value of a^3+b^3+c^3

If A=[(0,c,-b),(-c,0,a),(b,-a,0)] then A^(3)=

If a,b,c in R such that a^3+b^3+c^3=2 and |[a,b,c],[b,c,a],[c,a,b]|=0 then find abc

The expression (a - b)^3 + (b - c)^3 + (c - a)^3 = 0 if :

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is a skew -symmetric matrix , then find the values of a , b and c .

the value of the determinant |(0, b^(3)-a^(3),c^(3)-a^(3)),(a^(3)-b^(3),0,c^(3)-b^(3)),(a^(3)-c^(3),b^(3)-c^(3),0)| is equal to -