Home
Class 12
MATHS
From mean value theoren : f(b)-f(a)=(b...

From mean value theoren : `f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b` if `f(x)=1/x` , then `x_1` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

From mean value theorem, f(b)-f(a) = (b-a)f^(1)(x_(1)), a lt x_(1) lt b if f(x) = ( 1)/( x) then x_(1) =

From mean value theoren :f(b)-f(a)=(b-a)f'(x_(1));a

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b) , if a=4, b=9 and f(x)=sqrt(x) , then the value of c is -

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=sqrt(x) and a=4, b=9, find c.

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=Ax^(2)+Bx+c" in " a le x le b , find c.

In the mean value theorem f(b)-f(a)=(b-a)f'(c ), (a lt c lt b)," if " f(x)=x^(3)-3x-1 and a=-(11)/(7), b=(13)/(7) , find the value of c.

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :