Home
Class 11
MATHS
tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))...

tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))

Promotional Banner

Similar Questions

Explore conceptually related problems

y = "tan"^(-1)((sqrt(1 + a^2x^2 ) - 1)/(ax)) implies (1 + a^2x^2)y^('') + 2a^2 xy^' =

Differentiate w.r.t. x or find dy/dx of : y = tan^-1((sqrt(1+a^2x^2) - 1)/ax)

Differentiate the following w.r.t. as indicated: tan^-1((sqrt(1+a^2x^2)-1)/(ax)) w.r.t. tan^-1 ax

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

the derivation of tan ^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))