Home
Class 12
MATHS
(sin^(4)x+cos^(4)x)(dy)/(dx)=1=1...

(sin^(4)x+cos^(4)x)(dy)/(dx)=1=1

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of differential equation (sin^(4)x+cos^(4)x)(dy)/(dx)=1 is :

Solve: (dy)/(dx)=(1)/(sin^(4)x+cos^(4)x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))

Solve: (dy)/(dx)=1/(sin^4x+cos^4x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^x+e^(-x))

Evaluate int(1)/(sin^(4)x+cos^(4)x)dx . .

Evaluate: int(1)/(sin^(4)x+cos^(4)x)dx

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=

If y=sin^(-1)x+cos^(-1)x, find (dy)/(dx)

Find : int(1)/(sin^(4)x+cos^(4)x)dx .

Ify= (sin ^(2) x )/( 1+cos^(2) x) ,then (dy)/(dx) =