Home
Class 9
MATHS
f(x)=(x^(3)-6x^(2)+11x-6,x=1)/(2,3)...

f(x)=(x^(3)-6x^(2)+11x-6,x=1)/(2,3)

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(3)-6x^(2)+11x-6=0

Let f(x)=(|x^(3)-6x^(2)+11x-6|)/(x^(3)-6x^(2)+11x-6) then the number of solutions of a where lim_(xtoa)f(x) does not exist is

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

f(x)=x^(3)-6x^(2)+11x-6;g(x)=x-3

Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing f(x)=x^(3)-6x^(2)+11x-6byg(x)=x^(2)+x+1

Verify Rolle's theorem for the following functions: f(x)= x^(3) -6x^(2) + 11x-6, x in [2, 3]

Apply the division algorithm to find the quotient and remainder on dividing f(x)=x^(3)-6x^(2)+11x-6 by g(x)=x+2

Let f:R rarr R be a function such that f(x)=x^(3)-6x^(2)+11x-6. Then f(x) is

f(x)=(x^(2)-4)|(x^(3)-6x^(2)+11x-6)|+(x)/(1+|x|) then set of points at which the function if non differentiable is

lim_(x rarr 1) (x^(3)-6x^(2)+11x-6)/(x^(2)-5x+4)= ______.