Home
Class 13
MATHS
lim(alpha rarr beta)(sin^(2)alpha-sin^(2...

lim_(alpha rarr beta)(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(alpha to beta)[(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2))] is equal to

Evaluate the following limit : (lim)_(alpha->beta)[(sin^2alpha-sin^2beta)/(alpha^2-beta^2)]\ \

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)

lim_(x rarr0)(sin(alpha+beta)x+sin(alpha-beta)x+sin2 alpha x)/(cos^(2)beta x-cos^(2)alpha x)

If sin alpha+sin beta=a and cos alpha+cos beta=b show that sin(alpha+beta)=(2ab)/(alpha^(2)+beta^(2))