Home
Class 9
MATHS
[" 6.Shas that "],[(x^(a-b))^(a+b)(x^(b-...

[" 6.Shas that "],[(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1{(x^(a)-a^((-1)))^((1)/(a-1))}^((a)/(a+1))=x

Show that (x^(a+b))^(a-b)times(x^(b+c))^(b-c)times(x^(c+a))^(c-a)=1

(x^a/x^b)^(a+b).(x^b/x^c)^(b+c).(x^c/x^a)^(c+a)

Simplify (x^(a-b))^(a+b).(x^(b-c))^(b+c).(x^((c-a)))^((c+a)) where x ne 0 and x ne 1 .

Show that: (x^(a(b-c)))/(x^(b(a-c)))-:((x^(b))/(x^(a)))^(c)=1((x^(a+b))(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Show that : (x^(a(b-c)))/(x^(b(a-c)))*(x^(b))/(x^(a)))^(c)=1((x^(a+b))^(2)(x^(b+c))(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(a+b)\ ((x^b)/(x^c))^(b+c)((x^c)/(x^a))^(c+a)=1

Show that: (i) (x^(a(b-c)))/(x^(b(a-c)))-:((x^b)/(x^a))^c=1,