Home
Class 7
MATHS
If x=1&y=-3 then prove the identity (x+y...

If `x=1&y=-3` then prove the identity `(x+y)^2=x^2+2xy+y^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2=y^3 , then prove that (x/y)^(3/2)+(y/x)^-(2/3)=x^(1/2)+y^(1/3) .

If y=[sin^-1 x]^2 , then prove that : (1 -x^2) y_2-xy_1 - 2 = 0 .

Try to draw the geometrical figures for other identities. (x+y)^2=x^2+2xy+y^2

If y=(sin^(-1)x)^2 , then prove that (1-x^2)y_2-xy_1=2

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If 3x + 2y = -1 , then prove that 27x^3+8y^3+1-18xy = 0

Which Geometrical figure related to Algebraic Identity (x-y) ^2=x^2+y^2-2xy ?

If y = tan^(-1) x, prove that (1 + x^2)y_2 + 2xy_1 = 0

If x^2+y^2=7xy ,then prove that log(x+y)=log3+1/2(logx+logy)

If 2x= y^(1/5)+y^(-1/5) prove that (x^2-1)y_2+xy_1 = 25y