Home
Class 12
MATHS
Evaluate : int0^(pi/2)cos^3xdx...

Evaluate : `int_0^(pi/2)cos^3xdx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_0^{\frac{\pi}{2}} \cos^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( \cos^3 x \) as \( \cos x \cdot \cos^2 x \). We know that \( \cos^2 x = 1 - \sin^2 x \). Thus, we can rewrite the integral as: \[ \int_0^{\frac{\pi}{2}} \cos^3 x \, dx = \int_0^{\frac{\pi}{2}} \cos x (1 - \sin^2 x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) cos^5xdx

int_(0)^( pi/2)cos^(3)xdx

int_0^(pi/2) sinxcos^3xdx

int_(0)^( pi/2)cos^(6)xdx

int_0^(pi/2) sin^2xcos^3xdx

Evaluate : int_(0)^(pi//2)cos^(9)xdx

Evaluate int_(0)^(pi//2)cos^(4)xdx

int_(0)^( pi)cos^(3)xdx=

Evaluate: int_0^(pi/2)sin^4xdx

Evaluate : int_(0)^(pi) cos^(2)x.dx