Home
Class 12
MATHS
int(pi//4)^(pi//2)cotxdx=?...

`int_(pi//4)^(pi//2)cotxdx=?`

Text Solution

Verified by Experts

`int_(pi//4)^(pi//2)cotxdx`
`=int_(pi//4)^(pi//2)(​​cosx)/(sinx​)dx`
`=ln∣sinx∣_(π/2)​​^(π/4​)`
`=ln(sinπ/2​)−ln(sinπ/4​)`
`=ln(1)−ln(1/sqrt(2)​)`
...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

int_(-pi/2)^(pi/2)cosx dx

int_(pi//4)^(pi//2)cot^(2)x dx =

int_(-pi//4)^(pi//2)(secxdx)/(1+2^(x))dx .

int_(pi/4)^( pi/3)cot^(2)xdx=?

Evaluate int_(pi//6)^(pi//4)cosecxdx

int_(-pi//4)^(pi//4)|sinx|dx=(2-sqrt(2))

If int_(-pi//4)^(3pi//4)(e^(pi//4)dx)/((e^(x)+e^(pi//4))(sinx+cosx))=kint_(-pi//2)^(pi//2)secxdx , then the value of k is

int_(-pi/2)^(pi/2)sin xdx

int_(pi/6)^( pi/4)cot^(2)xdx