Home
Class 12
MATHS
Evaluate : int0^pi1/(1+sinx)dx...

Evaluate : `int_0^pi1/(1+sinx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int_0^{\pi} \frac{1}{1 + \sin x} \, dx, \] we can use a technique involving the substitution of \( \sin x \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^pix/(1+sinx)dx

Evaluate : int_0^(pi/2) x sinx dx

Evaluate: int_0^pi1/(1+e^(cosx))dx

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

Evaluate int_0^(pi/2) sqrt(1+sinx) dx

If the value of int_0^pi(x/(1+sinx))^2dx=lambda , then find the value of the integral =int_0^pi[(2x^2*cos^2(x/2))/(1+sinx)^2]dx

Evaluate int_(0)^(pi)(x)/((1+sinx))dx .

Evaluate: int_0^(2pi) [2sinx]dx

Using the properties of definite integral Evaluate : int_0^(pi/2) sinx /(sinx + cosx) dx

int_(0)^(pi)(x)/(1+sinx)dx .