Home
Class 12
MATHS
If a+b=1, then sum(n=0)^nC(n,r)a^rb^(n-r...

If `a+b=1,` then `sum_(n=0)^nC(n,r)a^rb^(n-r)` is equal to`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)nC_(r)(sin rx) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

sum_(r=0)^(n)nC_(r)sin rx*cos(n-r)x s equal to

In Delta ABC the value of the expression sum_(r=0)^(n)(nCr)a^(r)b^(n-r)cos(rB-(n-r)A) is equal to

If n is an odd natural number,then sum_(n)^(n)((-1)^(r))/(nC_(r)) is equal to

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to

If x+y=1, prove that sum_(r=0)^(n)nC_(r)x^(r)y^(n-r)