Home
Class 8
MATHS
(0.216)^(1/3)...

`(0.216)^(1/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

I. x = (216)^(1//3)" "II. Y^(3) +581 = 365

(81)^((1)/(4))-8*(216)^((1)/(3))+15*(32)^((1)/(5))+sqrt(225)

Find the value of {(216)^(2/3)+(36)^(-1/2)}

1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to:

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

If ((1/216)^(-2/3))/((1/27)^(-4/3))=x . The value of x is:

((1)/(216))^(-2/3)-:((1)/(27))^(-4/3)=? a.(3)/(4)b*(2)/(3) c.(4)/(9)d.(1)/(8)

Find the value of 4/(216)^(2/3)+1/(256)^(3/4)+2/(243)^(-2/5)

Factorize: (x^(3))/(216)-8y^(3)