Home
Class 12
MATHS
Evaluate : int0^(pi/2)sqrt(1+sinx)dx...

Evaluate : `int_0^(pi/2)sqrt(1+sinx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} \sqrt{1 + \sin x} \, dx, \] we can use a trigonometric identity to simplify the integrand. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_0^(pi/2) cosx/(1+sinx)dx

Evaluate: int_0^(200pi)sqrt(1+cosx\ )"dx"

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate : int(sinx)/(sqrt(1+sinx))dx .

Evaluate : int_0^(pi/2) x sinx dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate int_0^(pi/2)cosx/(1+cosx+sinx)dx

Evaluate: int_0^(pi/2) 1/(2cosx+4sinx)dx

Evaluate int_0^(pi/2) sin2xtan^-1(sinx)dx