Home
Class 12
MATHS
Evaluate : int1^e(logx)/xdx...

Evaluate : `int_1^e(logx)/xdx`

Text Solution

Verified by Experts

We have, `int_1^e​logxdx`
=`[logx∫1dx]_1^e​−int_1^e((d/dx)​logx∫1dx)dx`
=`[eloge−1log(1)]−int_1^e​1dx`
=`e−[x]_1^e​=e−[e−1]=1`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_1^e cos(log_ex)/xdx

Evaluate: int(e^x(1+xlogx))/xdx

Evaluate : int_1^3 cos( logx )/x dx

Evaluate int_(1)^(2)(logx)/(x)dx

int_a^b logx/xdx

Evaluate int e^(log_ex)/xdx

int_1^2 sqrt(logx)/xdx

Evaluate: intlog(logx)/xdx

" Evaluate "int_(-1)^1(|x|)/xdx

int(sec^2(logx))/xdx